Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 1 - Review - Exercises - Page 69: 28

Answer

(a) $\ln \frac{\sqrt{x}}{(x^2+1)^2}$ (b) $\ln \frac{1}{x^2-9}$

Work Step by Step

Part (a) $\frac{1}{2}\ln x-2\ln(x^2+1)$ (Use the property $\ln a^m=m\ln a$) $=\ln x^{1/2}-\ln(x^2+1)^2$ $=\ln\sqrt{x}-\ln(x^2+1)^2$ (Use the property $\ln \frac{a}{b}=\ln a-\ln b$) $=\ln \frac{\sqrt{x}}{(x^2+1)^2}$ Part (b) $\ln (x-3)+\ln (x+3)-2\ln (x^2-9)$ $=\ln (x-3)+\ln (x+3)-2\ln (x^2-9)$ (Use the property $\ln (ab)=\ln a+\ln b$) $=\ln ((x-3)(x+3))-2\ln (x^2-9)$ $=\ln (x^2-9)-2\ln (x^2-9)$ $=-\ln (x^2-9)$ (Use the property $\ln a^m=m\ln a$) $=\ln (x^2-9)^{-1}$ $=\ln \frac{1}{x^2-9}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.