Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 1 - Review - Exercises - Page 69: 26

Answer

$f^{-1}(x)=\frac{x-3}{5x+2}$

Work Step by Step

Let $f(x)=y$. Then, $y=\frac{2x+3}{1-5x}$ (Cross Multiply) $y(1-5x)=2x+3$ (Distribute $y$) $y-5xy=2x+3$ (Move $y$ and $2x$ and change their signs) $-5xy-2x=-y+3$ (Factor ou $x$) $x(-5y-2)=-y+3$ (Divide by $-5y-2$) $x=\frac{-y+3}{-5y-2}$ (Use the property $y=f(x)\Leftrightarrow x=f^{-1}(y)$) $f^{-1}(y)=\frac{-y+3}{-5y-2}$ Thus, the inverse function of $f(x)$ is $f^{-1}(x)=\frac{x-3}{5x+2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.