Answer
$t\approx-460.517$
Work Step by Step
Taking the natural logarithm of both sides and using the properties of logarithms, the value of the variable that satisfies the given equation, $
e^{-0.01t}=100
,$ is
\begin{array}{l}\require{cancel}
\ln e^{-0.01t}=\ln100
\\\\
-0.01t(\ln e)=\ln100
\\\\
-0.01t(1)=\ln100
\\\\
-0.01t=\ln100
\\\\
t=\dfrac{\ln100}{-0.01}
\\\\
t\approx-460.517
.\end{array}