Answer
$x\approx-0.317$
Work Step by Step
Taking the logarithm of both sides and using the properties of logarithms, the value of the variable that satisfies the given equation, $
5^{x+2}=15
,$ is
\begin{array}{l}\require{cancel}
\log5^{x+2}=\log15
\\\\
(x+2)\log5=\log15
\\\\
x+2=\dfrac{\log15}{\log5}
\\\\
x=\dfrac{\log15}{\log5}-2
\\\\
x\approx-0.317
.\end{array}