Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 1-11 - Cumulative Review - Page 776: 8

Answer

$100(m+1)(m-1)(m^2-m+1)(m^2+m+1)$

Work Step by Step

Factoring the $GCF= 100 ,$ the given $\text{ expression, }$ $ 100m^6-100 ,$ is equivalent to \begin{align*} 100(m^6-1) .\end{align*} Using $a^2-b^2=(a+b)(a-b),$ the $\text{ expression }$ above is equivalent to \begin{align*} & 100[(m^3)^2-(1)^2] \\&= 100[(m^3+1)(m^3-1)] .\end{align*} The expressions $ m^3 $ and $ 1 $ are both perfect cubes (the cube root is exact). Hence, $ (m^3+1) $ is a $\text{ sum }$ of $2$ cubes. The expressions $ m^3 $ and $ 1 $ are both perfect cubes (the cube root is exact). Hence, $ (m^3-1) $ is a $\text{ difference }$ of $2$ cubes. \begin{align*} a^3+b^3&=(a+b)(a^2-ab+b^2) \\&\text{ or }\\ a^3-b^3&=(a-b)(a^2+ab+b^2) ,\end{align*} The expression above is equivalent to \begin{align*} & 100[(m)^3+(1)^3][(m)^3-(1)^3] \\&= 100[(m+1)(m^2-m+1)][(m-1)(m^2+m+1)] \\&= 100(m+1)(m-1)(m^2-m+1)(m^2+m+1) .\end{align*} Hence, the factored form of $100m^6-100$ is $ 100(m+1)(m-1)(m^2-m+1)(m^2+m+1) $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.