Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 1-11 - Cumulative Review - Page 776: 21

Answer

graph of $f(x)=x^2+4x+3$

Work Step by Step

In the form $f(x)=a(x-h)^2+k,$ the given equation, $f(x)=x^2+4x+3,$ is equivalent to \begin{align*} f(x)&=(x^2+4x)+3 \\\\&= \left(x^2+4x+\left(\dfrac{4}{2}\right)^2 \right)+3-\left(\dfrac{4}{2}\right)^2 &(\text{complete the square}) \\\\&= \left(x^2+4x+4 \right)+3-4 \\&= (x+2)^2-1 \\&= [x-(-2)]^2-1 .\end{align*} The vertex of the given quadratic function is $(-2,-1).$ Substituting $x=-4,-3,-1,0,$ then the corresponding values of $y$ are \begin{align*} \text{If }x=-4:f(x)&=[x-(-2)]^2-1 \\f(-4)&=[-4-(-2)]^2-1 \\&= [-4+2]^2-1 \\&= [-2]^2-1 \\&= 4-1 \\&= 3 \\\\ \text{If }x=-3:f(x)&=[x-(-2)]^2-1 \\f(-3)&=[-3-(-2)]^2-1 \\&= [-3+2]^2-1 \\&= [-1]^2-1 \\&= 1-1 \\&= 0 \\\\ \text{If }x=-1:f(x)&=[x-(-2)]^2-1 \\f(-1)&=[-1-(-2)]^2-1 \\&= [-1+2]^2-1 \\&= [1]^2-1 \\&= 1-1 \\&= 0 \\\\ \text{If }x=0:f(x)&=[x-(-2)]^2-1 \\f(0)&=[0-(-2)]^2-1 \\&= [0+2]^2-1 \\&= 4-1 \\&= 3 .\end{align*} Hence, the graph of $f(x)=x^2+4x+3$ is a parabola with the vertex at $(-2,-1)$. It passes through $(-4,3), (-3,0), (-1,0),$ and $(0,3)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.