Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 1-11 - Cumulative Review - Page 776: 5

Answer

$13-i\sqrt{2}$

Work Step by Step

Using $(a+b)(c+d)=ac+(ad+bc)+bd$ or the FOIL Method, the given expression, $ \left(3\sqrt{2}+i\right)\left(2\sqrt{2}-i\right),$ is \begin{align*} & 3\sqrt{2}\left(2\sqrt{2}\right)+\left(3\sqrt{2}\left(-i\right)+i\left(2\sqrt{2}\right)\right)+i\left(-i\right) \\&= 6\left(\sqrt{2}\right)^2+\left(-3i\sqrt{2}+2i\sqrt{2}\right)-i^2 \\&= 6\left(2\right)-i\sqrt{2}-i^2 \\&= 12-i\sqrt{2}-i^2 .\end{align*} Since $i^2=-1,$ the expression above is equivalent to \begin{align*} & 12-i\sqrt{2}-(-1) \\&= 12-i\sqrt{2}+1 \\&= (12+1)-i\sqrt{2} \\&= 13-i\sqrt{2} .\end{align*} Hence, the expression $ \left(3\sqrt{2}+i\right)\left(2\sqrt{2}-i\right) $ simplifies to $ 13-i\sqrt{2} $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.