Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 1-11 - Cumulative Review - Page 776: 15

Answer

$x=4$

Work Step by Step

Squaring both sides of the given equation, $ \sqrt{x}=1+\sqrt{2x-7} ,$ results to \begin{align*} \left(\sqrt{x}\right)^2&=\left(1+\sqrt{2x-7}\right)^2 \\ x&=(1)^2+2(1)\left(\sqrt{2x-7}\right)+\left(\sqrt{2x-7}\right)^2 &\left(\text{Use }(a+b)^2=a^2+2ab+b^2\right) \\ x&=1+2\sqrt{2x-7}+2x-7 \\ x-2x-1+7&=2\sqrt{2x-7} \\ -x+6&=2\sqrt{2x-7} .\end{align*} Squaring both sides of the equation results to \begin{align*} (-x+6)^2&=\left(2\sqrt{2x-7}\right) \\ (x)^2+2(-x)(6)+(6)^2&=4(2x-7) &\left(\text{Use }(a+b)^2=a^2+2ab+b^2\right) \\ x^2-12x+36&=4(2x)+4(-7) &\left(\text{Use Distributive Property}\right) \\ x^2-12x+36&=8x-28 \\ x^2-12x+36-8x+28&=0 \\ x^2+(-12x-8x)+(36+28)&=0 &\left(\text{Combine like terms}\right) \\ x^2-20x+64&=0 .\end{align*} Using the factoring of quadratic trinomials, the factored form of the equation above is \begin{align*} (x-16)(x-4)&=0 .\end{align*} Equating each factor to zero (Zero Product Property) and solving for the variable, then \begin{align*} x-16&=0 \\ x&=16 \\\\\text{OR}\\\\ x-4&=0 \\ x&=4 .\end{align*} Check the solution: $ \sqrt{x}=1+\sqrt{2x-7} $. That is, \begin{align*} \text{If }x=4:\\ \sqrt{4}&\overset{?}=1+\sqrt{2(4)-7} \\ 2&\overset{?}=1+\sqrt{8-7} \\ 2&\overset{?}=1+\sqrt{1} \\ 2&\overset{?}=1+1 \\ 2&\overset{\checkmark}=2 \text{ (Hence, $x=4$ is a solution)} \\\\ \text{If }x=16:\\ \sqrt{16}&\overset{?}=1+\sqrt{2(16)-7} \\ 4&\overset{?}=1+\sqrt{32-7} \\ 4&\overset{?}=1+\sqrt{25} \\ 4&\overset{?}=1+5 \\ 4&\ne6 \text{ (Hence, $x=16$ is NOT a solution)} .\end{align*} Hence, the only solution to the equation $ \sqrt{x}=1+\sqrt{2x-7} $ is $ x=4 .$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.