Elementary Algebra

Published by Cengage Learning
ISBN 10: 1285194055
ISBN 13: 978-1-28519-405-9

Chapter 5 - Exponents and Polynomials - Chapter 5 Review Problem Set - Page 231: 40

Answer

$n^{4}$ - 5$n^{3}$ - 11$n^{2}$ - 30n - 4

Work Step by Step

($n^{2}$ + 2n + 4)($n^{2}$ - 7n - 1) = RECALL: The distributive property states that for any real numbers a, b, and c: a(b+c)=ab+ac a(b−c)=ab−ac Use the distributive property (which is shown above) to obtain: $n^{2}$($n^{2}$ - 7n - 1) + 2n($n^{2}$ - 7n - 1) + 4($n^{2}$ - 7n - 1) = $n^{4}$ - 7$n^{3}$ - $n^{2}$ + 2$n^{3}$ - 14$n^{2}$ - 2n + 4$n^{2}$ - 28n - 4 = Group similar terms. $n^{4}$ + (-7$n^{3}$ + 2$n^{3}$) + (-$n^{2}$ - 14$n^{2}$ + 4$n^{2}$) + (-2n - 28n) - 4 = Simplify. $n^{4}$ - 5$n^{3}$ - 11$n^{2}$ - 30n - 4
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.