Answer
$\frac{1}{2}$
Work Step by Step
Whenever a number in the numerator of a fraction is raised to a negative power, we put the number in the denominator of the fraction and make the exponent positive. Therefore,
$32^{-\frac{1}{5}}=\frac{1}{32^{\frac{1}{5}}}$
Now, recall the formula: $a^{\frac{b}{c}}=(\sqrt[c] a)^{b}$. Using this same formula, we obtain:
$\frac{1}{32^{\frac{1}{5}}}=\frac{1}{(2^{5})^{\frac{1}{5}}}=\frac{1}{\sqrt[5] {2^{5}}}=\frac{1}{2}$