Answer
See below
Work Step by Step
a) We know $A$ is an symmetric matrix, then $A+A^T$
$\rightarrow B=\frac{1}{2}(A+A^T)=\frac{1}{2}(A+A)=A$
and $C=\frac{1}{2}(A-A^T)=\frac{1}{2}(A-A)=0_n$
b) If $A$ is an $n\times n$ skew-symmetric matrix, then $A^T=-A$
we have $B=\frac{1}{2}(A+A^T)=\frac{1}{2}(A-A)=0_n$
and $C=\frac{1}{2}(A-A^T)=\frac{1}{2}(A-(-A))=A$