Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 2 - Matrices and Systems of Linear Equations - 2.2 Matrix Algebra - Problems - Page 137: 38

Answer

See below

Work Step by Step

We know $A$ is an $m \times n$ $A=\begin{bmatrix} a_{11} & a_{12} & ...& a_{1n}\\ a_{21} & a_{22} & ...& a_{2n}\\ . & . & ... & .\\ a_{m1} & a_{m2} & ...& a_{mn}\\ \end{bmatrix}$ and $D=diag(d_1,d_2,...,d_n)\\ D=\begin{bmatrix} d_{11} & 0 & ...&0\\ 0 & d_{22} & ...& 0\\ . & . & ... & .\\ 0 & 0 & ...& d_{nn}\\ \end{bmatrix}$ We obtain: $AD=\begin{bmatrix} a_{11} & a_{12} & ...& a_{1n}\\ a_{21} & a_{22} & ...& a_{2n}\\ . & . & ... & .\\ a_{m1} & a_{m2} & ...& a_{mn}\\ \end{bmatrix}\begin{bmatrix} d_{11} & 0 & ...&0\\ 0 & d_{22} & ...& 0\\ . & . & ... & .\\ 0 & 0 & ...& d_{nn}\\ \end{bmatrix}\\=\begin{bmatrix} a_{11}d_{11} & a_{12}d_{12} & ...& a_{1n}d_{nn}\\ a_{21} d_{21} & a_{22}d_{22} & ...& a_{2n}d_{nn}\\ . & . & ... & .\\ a_{m1}d_{11} & a_{m2}d_{22} & ...& a_{mn}d_{nn}\\ \end{bmatrix}\\ \begin{bmatrix} =a_{ij} d_{jj} \end{bmatrix}\\ =\begin{bmatrix} a_{j}dj \end{bmatrix}$ where $1\leq j\leq m$ and $1\leq j\leq n$ We can see that $AD$ is the matrix obtained by multiplying the j-th column vector of A by $d_{jj}$ , where $1 ≤ j ≤ n$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.