College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.4 - Real Zeros of Polynomials - 3.4 Exercises - Page 320: 53

Answer

$x\displaystyle \in\left\{-1, -\frac{1}{2}, -3-\sqrt {10}, -3+\sqrt {10}\right\}$

Work Step by Step

See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f$ with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=2x^4+15x^{3}+17x^{2}+3x-1$ Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1, $ $q:\qquad \pm 1, \pm2$ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm \frac{1}{2}$ Try for $x=-1:$ $\begin{array}{lllll} \underline{-1}|& 2 & 15 & 17 & 3 & -1\\ & & -2 & -13& -4& 1\\ & -- & -- & -- & --\\ & 2 & 13 & 4& -1 & |\underline{0} \end{array}$ $-1$ is a zero, $f(x)=(x+1)(2x^3+13x^2+4x-1)$ Try for $x=-\frac{1}{2}$: $\begin{array}{lllll} \underline{-\frac{1}{2}}|& 2 & 13 & 4 & -1\\ & & -1& -6& 1\\ & -- & -- & -- & --\\ & 2 & 12& -2 & |\underline{0} \end{array}$ $-\frac{1}{2}$ is a zero, $f(x)=(x+1)(x+\frac{1}{2})(2x^2+12x-2)$ Solving for the trinomial, using the quadratic formula for the quadratic equation of $ax^2+bx+c$, $x=\frac{-b\pm \sqrt {b^2-4ac}}{2a}$. in this case, $2x^2+12x-2$, $x=\frac{-12\pm \sqrt {12^2-4 \times 2\times (-2)}}{2\times 2}=\frac{-12\pm 4\sqrt {10}}{4}=-3\pm\sqrt {10}$. Therefore, the real zeros of the equations are: $x\displaystyle \in\left\{-1, -\frac{1}{2}, -3-\sqrt {10}, -3+\sqrt {10}\right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.