College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.4 - Real Zeros of Polynomials - 3.4 Exercises - Page 320: 25

Answer

$P(x)=(x-1)(x+1)(x+2)(x-2)$ Zeros: $ \ -2,\ -1, \ 1, \ 2. $

Work Step by Step

$P(x)=x^{4}-5x^{2}+4$ $P(-x)=x^{4}-5x^{2}+4$ Descart's rule of signs: P(x) has 2 sign changes $\Rightarrow$ 2 or 0 positive zeros. P(-x) has $2$ sign changes $\Rightarrow$ 2 or 0 negative zeros. Rational Zeros Theorem: candidates for p:$\quad \pm 1,\pm 2,\pm 4$ candidates for q:$\quad \pm 1,$ Possible rational zeros $\displaystyle \frac{p}{q}$:$\quad \pm 1,\pm 2,\pm 4$ Testing with synthetic division, $\left.\begin{array}{l} 1 \ \ |\\ \\ \\ \end{array}\right.\begin{array}{rrr} 1 & 0 & -5 & 0 & 4\\\hline & 1 & 1 & -4 & -4\\\hline 1& 1 & -4 & -4&|\ \ 0\end{array}$ $P(x)=(x-1)(x^{3}+x^{2}-4x-4)$ Again, testing with synthetic division, $\left.\begin{array}{l} -1 \ \ |\\ \\ \\ \end{array}\right.\begin{array}{rrr} 1& 1 & -4 & -4\\\hline & -1 & 0 & 4\\\hline 1& 0 & -4 &|\ \ 0\end{array}$ $P(x)=(x-1)(x+1)(x^{2}-4)$ ... recognize a difference of squares $P(x)=(x-1)(x+1)(x+2)(x-2)$ Zeros: $ \ -2,\ -1, \ 1, \ 2. $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.