College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.4 - Real Zeros of Polynomials - 3.4 Exercises - Page 320: 30

Answer

zeros : $-1,-\displaystyle \frac{1}{2}, 4, \frac{4}{3}$ $P(x)=(x+1)(2x+1)(x-4)(3x-4)$

Work Step by Step

Descart's rule of signs: $P(x)=6x^{4}-23x^{3}-13x^{2}+32x+16$ ... 2 sign changes: 2 or 0 positive zeros $P(-x)=6x^{4}+23x^{3}-13x^{2}-32x+16$ ... 2 sign changes: 2 or 0 negative zeros Rational Zeros Theorem: candidates for p:$\quad \pm 1,\pm 2,\pm 4,\pm 8,\pm 16$ candidates for q:$\quad \pm 1,\pm 2,\pm 3,\pm 6$ Possible rational zeros $\displaystyle \frac{p}{q}$:$\quad \displaystyle \pm\frac{1,2,4,8,16}{1,2,3,6}$ Testing with synthetic division, $\left.\begin{array}{l} -1 \ \ |\\ \\ \\ \end{array}\right.\begin{array}{rrrrrrrrr} 6 &-23 &-13 & 32 & 16 & & \\\hline & -6 &29 & -16 & -16 & & \\\hline 6 &-29 &16 & 16 & |\ \ 0 & & \end{array}$ $P(x)=(x+1)(6x^{3}-29x^{2}+16x+16)$ Again, testing with synthetic division, $\left.\begin{array}{l} -1/2 \ \ |\\ \\ \\ \end{array}\right.\begin{array}{rrrrrrrrr} 6 &-29 & 16 & 16 & & & \\\hline & -3 &16 & -16 & & & \\\hline 6 &-32 &32 & |\ \ 0 & & & \end{array}$ $P(x)=(x+1)(x+\displaystyle \frac{1}{2})(6x^{2}-32x+32)$ Again, testing with synthetic division, this time positives. 1 and 2 fail, but $\left.\begin{array}{l} 4 \ \ |\\ \\ \\ \end{array}\right.\begin{array}{rrrrrrrrr} 6 &-32 & 32 & & & & \\\hline & 24 &-32 & & & & \\\hline 6 &-8 &|\ \ 0 & & & & \end{array}$ $P(x)=(x+1)(x+\displaystyle \frac{1}{2})(x-4)(6x-8)$ zeros : $-1,-\displaystyle \frac{1}{2}, 4, \frac{4}{3}$ $P(x)=(x+1)(x+\displaystyle \frac{1}{2})(x-4)\cdot 2(3x-4)$ $=(x+1)\displaystyle \cdot 2(x+\frac{1}{2})(x-4)(3x-4)$ $P(x)=(x+1)(2x+1)(x-4)(3x-4)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.