College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.4 - Real Zeros of Polynomials - 3.4 Exercises - Page 320: 45

Answer

The real zeros of the polynomial are $x = -1$ or $x = \frac{\sqrt{13}}{3} - \frac{1}{3}$ or $x = -\frac{1}{3} - \frac{\sqrt{13}}{3}$

Work Step by Step

Solve for x over the real numbers: $3 x^3 + 5 x^2 - 2 x - 4 = 0$ The left hand side factors into a product with two terms: $(x + 1) (3 x^2 + 2 x - 4) = 0$ Split into two equations: $x + 1 = 0$ or $3 x^2 + 2 x - 4 = 0$ Subtract 1 from both sides: $x = -1$ or $3 x^2 + 2 x - 4 = 0$ Divide both sides by 3: $x = -1$ or $x^2 + \frac{(2 x)}{3} - \frac{4}{3} = 0$ Add $\frac{4}{3}$ to both sides: $x = -1$ or $x^2 + \frac{(2 x)}{3} = \frac{4}{3}$ Add $\frac{1}{9}$ to both sides: $x = -1$ or $x^2 + \frac{(2 x)}{3} + \frac{1}{9} = \frac{13}{9}$ Write the left hand side as a square: $x = -1$ or $(x + \frac{1}{3})^2 = \frac{13}{9}$ Take the square root of both sides: $x = -1$ or $x + \frac{1}{3} = \frac{\sqrt{13}}{3}$ or $x + \frac{1}{3} = -\frac{\sqrt{13}}{3}$ Subtract $\frac{1}{3}$ from both sides: $x = -1$ or $x = \frac{\sqrt{13}}{3} - \frac{1}{3}$ or $x + \frac{1}{3} = -\frac{\sqrt{13}}{3}$ Answer: The real zeros of the polynomial are $x = -1$ or $x = \frac{\sqrt{13}}{3} - \frac{1}{3}$ or $x = -\frac{1}{3} - \frac{\sqrt{13}}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.