College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.4 - Real Zeros of Polynomials - 3.4 Exercises - Page 320: 47

Answer

$x\displaystyle \in\left\{-1, \frac{3- \sqrt {13}}{2}, \frac{3+ \sqrt {13}}{2}, 4\right\}$

Work Step by Step

See The Rational Zero Theorem: If $\frac{p}{q}$ is a zero of the polynomial $f(x) $with integer coefficients, then $p$ is a factor of the constant term, $a_{0}$, and $q$ is a factor of the leading coefficient, $a_{n}$. ------------------------ $f(x)=x^4-6x^{3}+4x^{2}+15x+4$ Candidates for zeros, $\frac{p}{q}:$ $p:\qquad \pm 1, \pm 2, \pm4$ $q:\qquad \pm 1$ $\displaystyle \frac{p}{q}:\qquad \pm 1, \pm 2, \pm4$ Try for $x=-1:$ $\begin{array}{lllll} \underline{-1}|& 1 & -6 & 4 & 15 & 4\\ & & -1 & 7& -11& -4\\ & -- & -- & -- & --\\ & 1 & -7 & 11& 4 & |\underline{0} \end{array}$ $-1$ is a zero, $f(x)=(x+1)(x^3-7x^2+11x+4)$ Try for $x=4$: $\begin{array}{lllll} \underline{4}|& 1 & -7 & 11 & 4\\ & & 4& -12& -4\\ & -- & -- & -- & --\\ & 1 & -3& -1 & |\underline{0} \end{array}$ $4$ is a zero, $f(x)=(x+1)(x-4)(x^2-3x-1)$ Solving for the trinomial, using the quadratic formula for the quadratic equation of $ax^2+bx+c$, $x=\frac{-b\pm \sqrt {b^2-4ac}}{2a}$. in this case, $x^2-3x-1$, $x=\frac{3\pm \sqrt {-3^2-4 \times 1\times (-1)}}{2\times 1}=\frac{3\pm \sqrt {13}}{2}$. Therefore, the real zeros of the equations are: $x\displaystyle \in\left\{-1, \frac{3- \sqrt {13}}{2}, \frac{3+ \sqrt {13}}{2}, 4\right\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.