College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.4 - Real Zeros of Polynomials - 3.4 Exercises - Page 320: 36

Answer

$P(x)=(x-2)(3x-1)(4x+1)$ zeros: $-\displaystyle \frac{1}{4}, \frac{1}{3}, 2$

Work Step by Step

Descart's rule of signs: $P(x)=12x^{3}-25x^{2}+x+2$ ... $2$ sign changes: 2 or 0 positive zeros $P(-x)=-12x^{3}-25x^{2}-x+2$ ... 1 sign changes: 1 negative zeros Rational Zeros Theorem: Possible rational zeros $\displaystyle \frac{p}{q}$: $\displaystyle \pm\frac{1,2}{1,2,3,4,6,12}$ Testing with synthetic division, try 1 $\left.\begin{array}{l} 1 \ \ |\\ \\ \\ \end{array}\right.\begin{array}{rrrrrrrrr} 12 &-25 &1 & 2 & & & \\\hline & 12 & -13 & -12 & & & \\\hline 12 &-13 &-12 & |\ \ -10 & & & \end{array}$ x=1 fails, but it is not an upper bound. Try 2 $\left.\begin{array}{l} 2 \ \ |\\ \\ \\ \end{array}\right.\begin{array}{rrrrrrrrr} 12 &-25 &1 & 2 & & & \\\hline & 24 & -2 & -2 & & & \\\hline 12 &-1 &-1 & |\ \ -0 & & & \end{array}$ $P(x)=(x-2)(12x^{2}-x-1)$ ... we find factors of 12(-1)=-12 whose sum is -1 ... they are -4 and 3 $12x^{2}-x-1=12x^{2}-4x+3x-1$ $=4x(3x-1)+(3x-1)$ $=(3x-1)(4x+1)$ $P(x)=(x-2)(3x-1)(4x+1)$ zeros: $-\displaystyle \frac{1}{4}, \frac{1}{3}, 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.