Answer
$ f(x)=\frac{1}{4}x+\frac{7}{4}$
Work Step by Step
Slope $m=\frac{5-1}{13-(-3)}=\frac{4}{16}=\frac{1}{4}$
Point-slope form is $y-y_{1}=m(x-x_{1})$
Using the values of slope $m$ and point $(13,5)$, we get $y-5=\frac{1}{4}(x-13)$
$\implies y=\frac{1}{4}x-\frac{13}{4}+5$
$\implies y=\frac{1}{4}x+\frac{7}{4}$
A linear function is
$ f(x)=\frac{1}{4}x+\frac{7}{4}$