Answer
$y=-\frac{1}{2}x+1$
Work Step by Step
Let $(x_{1},y_{1})=(-6,4)$ and $(x_{2},y_{2})=(-2,2)$
The slope of the line is
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-4}{-2-(-6)}=\frac{-2}{4}=-\frac{1}{2}$
We can write the equation of a line using the value of slope $m=-\frac{1}{2}$ and the point $(-6,4)$.
$y-y_{1}=m(x-x_{1})$
$\implies y-4=-\frac{1}{2}(x-(-6))$
$\implies y=-\frac{1}{2}(x+6)+4$
$\implies y=-\frac{1}{2}x-3+4$
$\implies y=-\frac{1}{2}x+1$