Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 8 - 8.3 - Vectors in the Plane - 8.3 Exercises - Page 586: 72

Answer

$ \lt 10 \sqrt 2-50, 10 \sqrt 2 \gt $

Work Step by Step

The component form of the vector $u$ is: $ u=||u|| \lt \cos \theta_{u} , \sin \theta_{u} \gt =20 \lt \cos 40^{\circ},\sin 40^{\circ} \gt \\= \lt 10 \sqrt 2 , 10 \sqrt 2 \gt$ Now, the component form of the vector $v$ is: $ v=||v|| \lt \cos \theta_{v} , \sin \theta_{v} \gt =50 \lt \cos 180^{\circ},\sin 180^{\circ} \gt \\= \lt -50, 0 \gt$ Thus, $u+v= \lt 10 \sqrt 2 , 10 \sqrt 2 \gt+\lt -50,0 \gt = \lt 10 \sqrt 2-50, 10 \sqrt 2 \gt $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.