Answer
$x=0.607$
Work Step by Step
$2x\ln(\frac{1}{x})-x=0$
$2x\ln x^{-1}-x=0$
$-2x\ln x-x=0$
$-x(2\ln x+1)=0$
$-x=0$
$x=0$. Not a valid solution, because $\frac{1}{x}=\frac{1}{0}$
$2\ln x+1=0$
$2\ln x=-1$
$\ln x=-\frac{1}{2}$
$e^{\ln~x}=e^{-\frac{1}{2}}$
$x=e^{-\frac{1}{2}}=0.607$