Answer
$x=0.607$
Work Step by Step
$2x\ln x+x=0$
$x(2\ln x+1)=0$
$x=0$
$2\ln x+1=0$
$2\ln x=-1$
$\ln x=-\frac{1}{2}$
$e^{\ln~x}=e^{-\frac{1}{2}}$
$x=e^{-\frac{1}{2}}=0.607$
The domain of $\ln x$ is $(0,∞)$. That is, it does not include the $0$. So, $x=0$ is not a valid solution.