Answer
$\ln\sqrt {x^2(x+2)}=\ln x+\frac{1}{2}\ln(x+2)$
Work Step by Step
$\ln\sqrt {x^2(x+2)}=\ln{[x^2(x+2)}]^{\frac{1}{2}}=\frac{1}{2}\ln{x^2(x+2)}=\frac{1}{2}[\ln x^2+\ln(x+2)]=\frac{1}{2}[2\ln x+\ln(x+2)]=\ln x+\frac{1}{2}\ln(x+2)$
You can help us out by revising, improving and updating this answer.
Update this answerAfter you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.