Answer
Part A:
$\begin{bmatrix}
2 & -2\\
-3 & 0\\
7 & 6\\
\end{bmatrix}$
Part B:
Not possible.
Part C:
Not possible.
Work Step by Step
A has 3 rows and 2 columns (3 x 2).
B has 2 rows and 2 columns (2 x 2).
Part A:
$\begin{bmatrix}
2(1) + (-2)(0) & 2(0) + (-2)(1)\\
(-3)(1) + 0(0) & (-3)(0) + 0(1)\\
7(1) + 6(0) & 7(0) + 6(1)\\
\end{bmatrix}$ = $\begin{bmatrix}
2 & -2\\
-3 & 0\\
7 & 6\\
\end{bmatrix}$
Part B:
Since the number of columns in B does not equal the number of rows in A, BA is not possible.
Part C:
Since the number of columns in A does not equal the number of rows in A, AA is not possible.