Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 10 - 10.2 - Operations with Matrices - 10.2 Exercises - Page 725: 40

Answer

$\begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\\ \end{bmatrix}$ AB is a 3×3 matrix

Work Step by Step

A is a 3×3 matrix, and B is a 3×3 matrix. The number of columns of A is equal to the number of rows of B. So, it is possible to find AB, where AB is a 3×3 matrix. $\begin{bmatrix} 0(6) + 0(8) + 5(0) & 0(-11) + 0(16) + 5(0) & 0(4) + 0(4) + 5(0)\\ 0(6) + 0(8) + (-3)(0) & 0(-11) + 0(16) + (-3)(0) & 0(4) + 0(4) + (-3)(0)\\ 0(6) + 0(8) + 4(0) & 0(-11) + 0(16) + 4(0) & 0(4) + 0(4) + 4(0)\\ \end{bmatrix}$ = $\begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0\\ \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.