Answer
$\begin{bmatrix}
0 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 0\\
\end{bmatrix}$
AB is a 3×3 matrix
Work Step by Step
A is a 3×3 matrix, and B is a 3×3 matrix. The number of columns of A is equal to the number of rows of B. So, it is possible to find AB, where AB is a 3×3 matrix.
$\begin{bmatrix}
0(6) + 0(8) + 5(0) & 0(-11) + 0(16) + 5(0) & 0(4) + 0(4) + 5(0)\\
0(6) + 0(8) + (-3)(0) & 0(-11) + 0(16) + (-3)(0) & 0(4) + 0(4) + (-3)(0)\\
0(6) + 0(8) + 4(0) & 0(-11) + 0(16) + 4(0) & 0(4) + 0(4) + 4(0)\\
\end{bmatrix}$ = $\begin{bmatrix}
0 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 0\\
\end{bmatrix}$