Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 10 - 10.2 - Operations with Matrices - 10.2 Exercises - Page 725: 39

Answer

$\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & \frac{7}{2}\\ \end{bmatrix}$ AB is a 3×3 matrix

Work Step by Step

A is a 3×3 matrix, and B is a 3×3 matrix. The number of columns of A is equal to the number of rows of B. So, it is possible to find AB, where AB is a 3×3 matrix. $\begin{bmatrix} 5(\frac{1}{5}) + 0(0) + 0(0) & 5(0) + 0(-\frac{1}{8}) + 0(0) & 5(0) + 0(0) + 0(\frac{1}{2})\\ 0(\frac{1}{5}) + (-8)(0) + 0(0) & 0(0) + (-8)(-\frac{1}{8}) + 0(0) & 0(0) + (-8)(0) + 0(\frac{1}{2})\\ 0(\frac{1}{5}) + 0(0) + 7(0) & 0(0) + 0(-\frac{1}{8}) + 7(0) & 0(0) + (0)(0) + 7(\frac{1}{2}) \\ \end{bmatrix}$ = $\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & \frac{7}{2}\\ \end{bmatrix}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.