Answer
$AB$ is an $3\times2$ matrix.
$AB=\begin{bmatrix} -2 & 51 \\ -8 & 33 \\ 0 & 27 \end{bmatrix}$
Work Step by Step
$A$ is an $3\times2$ matrix and $B$ is an $2\times2$ matrix. The number of columns of $A$ is equal to the number of rows of $B$. So, it is possible to find $AB$, where $AB$ is a $3\times2$ matrix.
$\begin{bmatrix} -1 & 6 \\ -4 & 5 \\ 0 & 3 \end{bmatrix}·\begin{bmatrix} 2 & 3 \\ 0 & 9 \end{bmatrix}=\begin{bmatrix} -1(2)+6(0) & -1(3)+6(9) \\ -4(2)+5(0) & -4(3)+5(9) \\ 0(2)+3(0) & 0(3)+3(9) \end{bmatrix}=\begin{bmatrix} -2 & 51 \\ -8 & 33 \\ 0 & 27 \end{bmatrix}$