Answer
$2, -2, -1+\sqrt3i, -1-\sqrt3i$
Work Step by Step
$x^4+2x^3-8x-16 = x^3(x+2)-8(x+2)=(x^3-8)(x-2)=0$
Either x-2=0 giving x=2
or $x^3+8=0$ giving $(x+2)(x^2+2x+4)=0$, that gives either x+2=0 giving x=-2 or
$x^2+2x+4=0$
$(x+1)^2+3=0$
$(x+1)^2 = -3$
x+1 = $+\sqrt3i$ or $-\sqrt3i$
Hence, x = 1$+\sqrt3i$ or $1-\sqrt3i$ for this case.
Hence all in all x can be {$2, -2, -1+\sqrt3i, -1-\sqrt3i$}