Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 12 Sequences and Series - 12.2 Analyze Arithmetic Sequences and Series - 12.2 Exercises - Skill Practice - Page 806: 27

Answer

$a_n=3.5n-5$

Work Step by Step

Let $a_n$ be our arithmetic sequence. We are given: $$\begin{align*} a_{10}&=30\\ d&=3.5. \end{align*}$$ We determine the first term $a_1$: $$\begin{align*} a_n&=a_1+(n-1)d\\ a_{10}&=a_1+(10-1)d\\ 30&=a_1+9(3.5)\\ 30-31.5&=a_1\\ a_1&=-1.5. \end{align*}$$ We write the rule for the general term $a_n$: $$\begin{align*} a_n&=a_1+(n-1)d\\ a_n&=-1.5+(n-1)(3.5)\\ &=-1.5+3.5n-3.5\\ &=3.5n-5. \end{align*}$$ We got: $$a_n=3.5n-5.\tag1$$ We calculate the first six terms substituting $n=2,3,4,5,6$ in Eq. $(1)$ and $a_1=-1.5$: $$\begin{align*} a_1&=-1.5\\ a_2&=3.5(2)-5=2\\ a_3&=3.5(3)-5=5.5\\ a_4&=3.5(4)-5=9\\ a_5&=3.5(5)-5=12.5\\ a_6&=3.5(6)-5=16. \end{align*}$$ Graph the first six terms:
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.