Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 12 Sequences and Series - 12.2 Analyze Arithmetic Sequences and Series - 12.2 Exercises - Skill Practice - Page 806: 26

Answer

$a_n=81-7n$

Work Step by Step

Let $a_n$ be our arithmetic sequence. We are given: $$\begin{align*} a_{12}&=-3\\ d&=-7. \end{align*}$$ We determine the first term $a_1$: $$\begin{align*} a_n&=a_1+(n-1)d\\ a_{12}&=a_1+(12-1)d\\ -3&=a_1+11(-7)\\ -3+77&=a_1\\ a_1&=74. \end{align*}$$ We write the rule for the general term $a_n$: $$\begin{align*} a_n&=a_1+(n-1)d\\ a_n&=74+(n-1)(-7)=74-7n+7=81-7n. \end{align*}$$ We got: $$a_n=81-7n.\tag1$$ We calculate the first six terms substituting $n=2,3,4,5,6$ in Eq. $(1)$ and $a_1=74$: $$\begin{align*} a_1&=74\\ a_2&=81-7(2)=67\\ a_3&=81-7(3)=60\\ a_4&=81-7(4)=53\\ a_5&=81-7(5)=46\\ a_6&=81-7(6)=39. \end{align*}$$ Graph the first six terms:
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.