Answer
10
Work Step by Step
Use the formula of combination: $_{n}$C$_{r}$=$\frac{n!}{r!(n-r)!}$. Plug in 10 for N and 9 for R:
$_{n}$C$_{r}$=$\frac{n!}{r!(n-r)!}$
$_{10}$C$_{9}$=$\frac{10!}{9!(10-9)!}$ -simplify like terms-
$_{10}$C$_{9}$=$\frac{10!}{9! (1!)}$ -write using factorial-
$_{10}$C$_{9}$=$\frac{10*9*8*7*6*5*4*3*2*1}{(9*8*7*6*5*4*3*2*1)(1)}$ -simplify-
$_{10}$C$_{9}$=10