Answer
1
Work Step by Step
Use the formula of combination: $_{n}$C$_{r}$=$\frac{n!}{r!(n-r)!}$. Plug in 3 for N and 0 for R:
$_{n}$C$_{r}$=$\frac{n!}{r!(n-r)!}$
$_{3}$C$_{0}$=$\frac{3!}{0!(3-0)!}$ -simplify like terms-
$_{3}$C$_{0}$=$\frac{3!}{0! (3!)}$ -write using factorial-
$_{3}$C$_{0}$=$\frac{3*2*1}{(1)(3*2*1)}$ -simplify-
$_{3}$C$_{0}$=1