Answer
21
Work Step by Step
Use the formula of combination: $_{n}$C$_{r}$=$\frac{n!}{r!(n-r)!}$. Plug in 7 for N and 2 for R:
$_{n}$C$_{r}$=$\frac{n!}{r!(n-r)!}$
$_{7}$C$_{2}$=$\frac{7!}{2!(7-2)!}$ -simplify like terms-
$_{7}$C$_{2}$=$\frac{7!}{2! (5!)}$ -write using factorial-
$_{7}$C$_{2}$=$\frac{7*6*5*4*3*2*1}{(2*1)(5*4*3*2*1)}$ -simplify-
$_{7}$C$_{2}$=21