Answer
21
Work Step by Step
Use the formula of combination: $_{n}$C$_{r}$=$\frac{n!}{r!(n-r)!}$. Plug in 7 for N and 5 for R:
$_{n}$C$_{r}$=$\frac{n!}{r!(n-r)!}$
$_{7}$C$_{5}$=$\frac{7!}{5!(7-5)!}$ -simplify like terms-
$_{7}$C$_{5}$=$\frac{7!}{5! (2!)}$ -write using factorial-
$_{7}$C$_{5}$=$\frac{7*6*5*4*3*2*1}{(5*4*3*2*1)(2*1)}$ -simplify-
$_{7}$C$_{5}$=21