Answer
56
Work Step by Step
Use the formula of combination: $_{n}$C$_{r}$=$\frac{n!}{r!(n-r)!}$. Plug in 8 for N and 5 for R:
$_{n}$C$_{r}$=$\frac{n!}{r!(n-r)!}$
$_{8}$C$_{5}$=$\frac{8!}{5!(8-5)!}$ -simplify like terms-
$_{8}$C$_{5}$=$\frac{8!}{5! (3!)}$ -write using factorial-
$_{8}$C$_{5}$=$\frac{8*7*6*5*4*3*2*1}{(5*4*3*2*1)(3*2*1)}$ -simplify-
$_{8}$C$_{5}$=56