Answer
28
Work Step by Step
Use the formula of combination: $_{n}$C$_{r}$=$\frac{n!}{r!(n-r)!}$. Plug in 8 for N and 6 for R:
$_{n}$C$_{r}$=$\frac{n!}{r!(n-r)!}$
$_{8}$C$_{6}$=$\frac{8!}{6!(8-6)!}$ -simplify like terms-
$_{8}$C$_{6}$=$\frac{8!}{6! (2!)}$ -write using factorial-
$_{8}$C$_{6}$=$\frac{8*7*6*5*4*3*2*1}{(6*5*4*3*2*1)(2*1)}$ -simplify-
$_{8}$C$_{6}$=28