Answer
1
Work Step by Step
Use the formula of combination: $_{n}$C$_{r}$=$\frac{n!}{r!(n-r)!}$. Plug in 6 for N and 6 for R:
$_{n}$C$_{r}$=$\frac{n!}{r!(n-r)!}$
$_{6}$C$_{6}$=$\frac{6!}{6!(6-6)!}$ -simplify like terms-
$_{6}$C$_{6}$=$\frac{6!}{6! (0!)}$ -write using factorial-
$_{6}$C$_{6}$=$\frac{1!}{0!}$ -simplify-
$_{6}$C$_{6}$=1