Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 4 - Forces and Newton's Laws of Motion - Problems - Page 114: 17

Answer

The time it takes is $33.3s$

Work Step by Step

1) When engine 1 and engine 2 are fired in the same direction: $$\sum \vec{F}=\vec{F_1}+\vec{F_2}$$ $$\sum F=F_1+F_2=2F$$ We have the probe's initial velocity $v_0=0$, its acceleration $a$, the distance it travels $\Delta x$ and the time to travel it $t_1=28s$. $$\Delta x=v_0t+\frac{1}{2}at_1^2$$ $$\Delta x=\frac{1}{2}at^2_1$$ From Newton's 2nd Law, we can rewrite $a$: $$\Delta x=\frac{1}{2}\frac{\sum F}{m_p}t^2_1=\frac{2Ft^2_1}{2m_p}=\frac{Ft^2_1}{m_p}$$ 2) When engine 1 and engine 2 are fired in perpendicular direction: $$\sum \vec{F}=\vec{F_1}+\vec{F_2}$$ $$\sum F=\sqrt{F_1^2+F_2^2}=\sqrt{F^2+F^2}=F\sqrt2$$ Similarly, we follow the calculations from 1) for $\Delta x$ and get $$\Delta x=\frac{F\sqrt2t_2^2}{2m_p}$$ Therefore, $$\frac{F\sqrt2t_2^2}{2m_p}=\frac{Ft^2_1}{m_p}$$ $$\frac{t^2_2\sqrt2}{2}=t^2_1$$ $$t_2^2=\sqrt2 t_1^2$$ $$t_2=\sqrt[4]2t_1=\sqrt[4]2\times28=33.3s$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.