Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 29 - Particles and Waves - Problems - Page 841: 9

Answer

so an Owl can detect $291 photons $ per second.

Work Step by Step

An owl can detect light intensity $I=5.0\times10^{-13}W/m^2=5.0\times10^{-13}J/(s.m^2)$ so it can detect $E=5.0\times10^{-13}J $ per second per square meter. owl is having pupil of diameter $8.5mm=8.5\times10^{-3}m$ radius $r=\frac{8.5\times10^{-3}m}{2}=4.25\times10^{-3}m$ Area of pupil $=\pi r^2=3.14\times(8.5\times10^{-3}m)^2$ Area of pupil $=226.865\times10^{-6}m^2$$=2.26865\times10^{-4}m^2$ Energy detection by pupils per second $=intensity \times Area (pupil)$ Energy detection by pupils per second $=5.0\times10^{-13}J/(s.m^2) \times 2.26865\times10^{-4}m^2$ Energy detection by pupils per second $=11.34325\times10^{-17}J=1.134325\times10^{-16}J/s$ Energy detection by pupils per second is $E= 1.134325\times10^{-16}J/s$ (we have to concert this energy to number of photons) Given that all photon are of wavelength $\lambda=510nm=510\times10^{-9}m=5.1\times10^{-7}m$ From Planks hypothesis $E=\frac{hc}{\lambda}$ putting $h=6.63\times10^{-34}J.s$, $\lambda=5.1\times10^{-7}m$,, $c=3\times10^{8}m/s$ so Energy of one photon $E=\frac{hc}{\lambda}=\frac{6.63\times10^{-34}J.s\times3\times10^{8}m/s}{5.1\times10^{-7}m}=3.9\times10^{-19}J$ Now since $3.9\times10^{-19}J$ is equal to $1$ photon $1J$ will be equal to $\frac{1}{3.9\times10^{-19}}$photons so $1.134325\times10^{-16}J$ is equal to $\frac{1.134325\times10^{-16}}{3.9\times10^{-19}}$photons=$0.29085\times10^{3}$ photons or $0.29085\times10^{3}$ photons $=290.85\approx291$photons so an Owl can detect 291photon per second.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.