Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 29 - Particles and Waves - Problems - Page 841: 11

Answer

$162nm$

Work Step by Step

Given Wavelength of the incident light is $\lambda=221nm=221\times10^{-9}m=2.21\times10^{-7}m$ Energy of incident photon is given by $E=hf=\frac{hc}{\lambda}$ putting $h=6.63\times10^{-34}J.s$, $\lambda=2.21\times10^{-7}m$,, $c=3\times10^{8}m/s$ $E=hf=\frac{6.63\times10^{-34}J.s\times3\times10^{8}m/s}{2.21\times10^{-7}m}=9.0\times10^{-19}J$.......equation(1) Maximum kinetic energy of emitted electron is given as $KE_{max}=3.28\times10^{-19}J$ so from equation $hf=KE_{max} +W_{0}$ $W_{0}=hf-KE_{max}$ $W_{0}= 9.0\times10^{-19}J-3.28\times10^{-19}J=5.72\times10^{-19}J$ so work function of the metal is $W_{0}=5.72\times10^{-19}J$ If i want new maximum kinetic energy of electron to be doubled . Suppose my new photon energy is $E_{new}$ with wavelength $\lambda_{new}$ new $KE_{max,new}=2\times KE_{max}=2\times3.28\times10^{-19}J$ $KE_{max,new}=6.56\times10^{-19}J$ $E_{new}=KE_{max,new}+W_{0}=6.56\times10^{-19}J+5.72\times10^{-19}J$ $E_{new}=12.28\times10^{-19}J$ $\lambda_{new}=\frac{hc}{E_{new}}$ putting $h=6.63\times10^{-34}J.s$, $E_{new}=12.28\times10^{-19}J$, $c=3\times10^{8}m/s$ $\lambda=\frac{6.63\times10^{-34}J.s\times3\times10^{8}m/s}{12.28\times10^{-19}J} =1.61970\times10^{-7}m=161.97\times10^{-9}m$ $\lambda=161.97nm\approx162nm$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.