Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 29 - Particles and Waves - Problems - Page 841: 18

Answer

incident X-ray wavelength is $\lambda=0.353292nm$

Work Step by Step

Given that Scattering angle is $\theta=122^{0}$ Scattered X-ray has a momentum $p'=1.856\times10^{-24}kg.m/s$ suppose scattered X-ray has wavelength $\lambda'$ we know that momentum of photon is given by $p=\frac{h}{\lambda}$ so $\lambda=\frac{h}{p}$, for scattered photon $\lambda'=\frac{h}{p'}$ putting the values $h=6.626\times10^{-34}J.s$ and $p'=1.856\times10^{-24}kg.m/s$ $\lambda'=\frac{6.626\times10^{-34}J.s}{1.856\times10^{-24}kg.m/s}=3.570043\times10^{-10}m=0.3570043\times10^{-9}m$ $\lambda'=0.3570043\times10^{-9}m=0.3570043nm$ Suppose wavelength of incident X-ray is $\lambda$ so from Compton's scattering equation 29.7 $\lambda'-\lambda=\frac{h}{mc}(1-cos\theta)$ putting the values of $h=6.626\times10^{-34}J.s$, $\lambda'=0.3570043\times10^{-9}m$, $\theta=122^{0}$, $m=9.109\times10^{-31}kg$ $c=2.998\times10^{8}m/s$ $0.3570043\times10^{-9}m-\lambda=\frac{6.626\times10^{-34}J.s}{9.109\times10^{-31}kg\times2.998\times10^{8}m/s}(1-cos122^{0})$ $0.3570043\times10^{-9}m-\lambda=0.242632\times10^{-11}m[1-(-0.529919)]$ $0.3570043\times10^{-9}m-\lambda=0.371207\times10^{-11}m$ $0.3570043\times10^{-9}m-\lambda=0.00371207\times10^{-9}m$ $\lambda=0.3570043\times10^{-9}m-0.00371207\times10^{-9}m$ $\lambda=0.353292\times10^{-9}m$ or incident X-ray wavelength is $\lambda=0.353292nm$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.