Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 29 - Particles and Waves - Problems - Page 841: 28

Answer

$\frac{\lambda_{electron}}{\lambda_{proton}}=1.8362\times10^{3}$

Work Step by Step

Given that electron and proton are having the same speed $v$ mass of the electron is $m_{e}= 9.109\times^{-31}kg$ speed of the electron is $v$ so momentum of electron $p_{e}=m_{e}v$ suppose de_Broglie wavelength of the electron is $\lambda_{electron}$ so from de Broglie hypothesis $\lambda=\frac{h}{p}$ $\lambda_{electron}=\frac{h}{p_{e}}=\frac{h}{m_{e}v}$........................equation(1) mass of the proton is $m_{p}= 1.6726\times^{-27}kg$ speed of the proton is $v$ so momentum of proton $p_{p}=m_{p}v$ suppose de_Broglie wavelength of the electron is $\lambda_{electron}$ so from de Broglie hypothesis $\lambda=\frac{h}{p}$ $\lambda_{proton}=\frac{h}{p_{p}}=\frac{h}{m_{p}v}$........................equation(2) dividing equation(1) by equation(2) $\frac{\lambda_{electron}}{\lambda_{proton}}$=$\frac{\frac{h}{m_{e}v}}{\frac{h}{m_{p}v}}$ $\frac{\lambda_{electron}}{\lambda_{proton}}=\frac{m_{p}}{m_{e}}$ putting $m_{e}= 9.109\times^{-31}kg$ $m_{p}= 1.6726\times^{-27}kg$ $\frac{\lambda_{electron}}{\lambda_{proton}}=\frac{1.6726\times^{-27}kg}{9.109\times^{-31}kg}$ $\frac{\lambda_{electron}}{\lambda_{proton}}=0.18362\times10^{4}$ $\frac{\lambda_{electron}}{\lambda_{proton}}=1.8362\times10^{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.