Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 29 - Particles and Waves - Problems - Page 841: 10

Answer

$\lambda=9.5199\times10^{-12}m=0.0095199nm$

Work Step by Step

Magnitude of charge on point charge $q=8.3\mu C=8.3\times10^{-6}C$ Charge on proton $q_{p}=1.6\times10^{-19}C$ initial distance $r_{i}=0.420m$ Potential energy of two charge system where two charges $q_{1}$& $q_{2}$ are separated by distance $r$ is given by $V=-k\frac{q_{1}\times q_{2}}{r} $ so initial energy of system $V_{i}=-k\frac{q\times q_{p}}{r_{i}} $ putting $q=8.3\times10^{-6}C$, $q_{p}=1.6\times10^{-19}C$, $r_{i}=0.420m$ and $k= 9.0\times10^{9}N.m^2/C^2$ $V_{i}=- 9.0\times10^{9}N.m^2/C^2\frac{8.3\times10^{-6}C\times 1.6\times10^{-19}C}{0.420m} $ $V_{i}=-284.5714\times10^{-16}J=-2.845714\times10^{-14}J$ $V_{i}=-2.845714\times10^{-14}J$ .........equation(1) similarly potential energy at a distance $r_{f}=1.58m$ so final energy of system $V_{f}=-k\frac{q\times q_{p}}{r_{f}} $ putting $q=8.3\times10^{-6}C$, $q_{p}=1.6\times10^{-19}C$, $r_{f}=1.58m$ and $k= 9.0\times10^{9}N.m^2/C^2$ $V_{f}=- 9.0\times10^{9}N.m^2/C^2\frac{8.3\times10^{-6}C\times 1.6\times10^{-19}C}{1.58m} $ $V_{f}=-75.64556\times10^{-16}J=-0.756455\times10^{-14}J$ $V_{f}=-0.756455\times10^{-14}J$ .........equation(2) change in energy $\Delta E=V_{f}-V_{i}$ $\Delta E=-0.756455\times10^{-14}J-(-2.845714\times10^{-14}J)$ $\Delta E=2.0893\times10^{-14}J $ this energy is carried out by photon whose wavelength will be $\lambda=\frac{hc}{E}$ putting $h=6.63\times10^{-34}J.s$, $E=2.0893\times10^{-14}J$, $c=3\times10^{8}m/s$ $\lambda=\frac{6.63\times10^{-34}J.s\times3\times10^{8}m/s}{2.0893\times10^{-14}J} =9.519934\times10^{-12}m$ $\lambda=0.0095199\times10^{-9}m=0.0095199nm$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.