Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 5 - Force and Motion-I - Problems - Page 119: 47

Answer

$F = 6400~N$

Work Step by Step

We can find the speed when the person left the cannon: $x = \frac{v^2~sin~2\theta}{g}$ $v^2 = \frac{x~g}{sin~2\theta}$ $v = \sqrt{\frac{x~g}{sin~2\theta}}$ $v = \sqrt{\frac{(69~m)(9.8~m/s^2)}{sin~(2)(53^{\circ})}}$ $v = 26.52~m/s$ We can find the acceleration in the barrel: $v^2 = v_0^2+2ad$ $v^2 = 2ad$ $a = \frac{v^2}{2d}$ $a = \frac{(26.52~m/s)^2}{(2)(5.2~m)}$ $a = 67.63~m/s^2$ We can find the force $F$ propelling him: $F - mg~sin~\theta = ma$ $F = m~(a+g~sin~\theta )$ $F = (85~kg)~[(67.63~m/s^2)+(9.8~m/s^2)~(sin~53^{\circ})]$ $F = 6400~N$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.