Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 44 - Quarks, Leptons, and the Big Bang - Problems - Page 1364: 24a

Answer

$\text { From } \gamma=1+K / m c^{2}(\text { see } \mathrm{Eq} .37-52) \text { and }$ $$v=\beta c=c \sqrt{1-\gamma^{-2}}(\text { see Eq. } 37-8),$$ we get $$v=c \sqrt{1-\left|1+\frac{K}{m c^{2}}\right|^{-2}} $$ Therefore, for the $\Sigma^{* 0}$ particle, $$v=\left(2.9979 \times 10^{8} \mathrm{m} / \mathrm{s}\right) \sqrt{1-\left(1+\frac{1000 \mathrm{MeV}}{1385 \mathrm{MeV}}\right)^{-2}}=2.4406 \times 10^{8} \mathrm{m} / \mathrm{s} $$ For $\Sigma^{0} $ $$v^{\prime}=\left(2.9979 \times 10^{8} \mathrm{m} / \mathrm{s}\right) \sqrt{1-\left(1+\frac{1000 \mathrm{MeV}}{1192.5 \mathrm{MeV}}\right)^{-2}}=2.5157 \times 10^{8} \mathrm{m} / \mathrm{s} $$ Thus $\Sigma^{0}$ moves faster than $\Sigma^{* 0}$.

Work Step by Step

$\text { From } \gamma=1+K / m c^{2}(\text { see } \mathrm{Eq} .37-52) \text { and }$ $$v=\beta c=c \sqrt{1-\gamma^{-2}}(\text { see Eq. } 37-8),$$ we get $$v=c \sqrt{1-\left|1+\frac{K}{m c^{2}}\right|^{-2}} $$ Therefore, for the $\Sigma^{* 0}$ particle, $$v=\left(2.9979 \times 10^{8} \mathrm{m} / \mathrm{s}\right) \sqrt{1-\left(1+\frac{1000 \mathrm{MeV}}{1385 \mathrm{MeV}}\right)^{-2}}=2.4406 \times 10^{8} \mathrm{m} / \mathrm{s} $$ For $\Sigma^{0} $ $$v^{\prime}=\left(2.9979 \times 10^{8} \mathrm{m} / \mathrm{s}\right) \sqrt{1-\left(1+\frac{1000 \mathrm{MeV}}{1192.5 \mathrm{MeV}}\right)^{-2}}=2.5157 \times 10^{8} \mathrm{m} / \mathrm{s} $$ Thus $\Sigma^{0}$ moves faster than $\Sigma^{* 0}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.