Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 4 - Motion in Two and Three Dimensions - Problems - Page 92: 124c

Answer

t=2.06 s

Work Step by Step

r reach its maximum value for $\frac{dr}{dt}=0$ (*) We can write for r : $r=\sqrt{\ (x-x_{0})^{2}-(y-y_{0})^{2}}$ $x-x_{0}=v_{0}\cos\theta_{0}t$ $y-y_{0}=v_{0}\sin\ \theta_{0}t-\frac{gt^{2}}{2}$ $r=\sqrt{\ (v_{0}\cos\theta_{0}t)^{2}-(v_{0}\sin\ \theta_{0}t-\frac{gt^{2}}{2})^{2}}$ When we square : $ r=\sqrt {(v_{0}t)^{2}-2v_{0}\sin\ \theta_{0}\frac {gt^{3}}{2}+\frac {g ^{2}t^{4}}{4}}$ $ r=t\sqrt {v_{0}^{2}-v_{0}\sin\ \theta_{0}gt+\frac {g ^{2}t^{2}}{4}}$ By derivation (*) : $\frac{dr}{dt} =\frac{v_{0}^{2}-\frac {3v_{0}\sin\ \theta_{0}gt }{2}+\frac {g ^{2}t^{2}}{2}}{\sqrt {v_{0}^{2}-v_{0}\sin\ \theta_{0}gt+\frac {g ^{2}t^{2}}{4}}}=0$ This expression is 0 when the numerator is equal to 0. For values : $v_{0}=16 m/s $ $ \theta_{0}=40^{\circ}$ For values, the fraction numerator looks like : $256-151t+48t^{2}=0$ Since D<0, there is no real solution. This means that the maximum is reached at the end of the flight. $t=\frac{2v_{0}\sin\theta_{0}}{g}=2.06$s
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.