Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 35 - Interference - Problems - Page 1076: 30

Answer

$y= 17 \sin(\omega t + 13^{\circ})$

Work Step by Step

We are asked to find the sum of the two given quantities: $y_1= 10 \sin \omega t $ $ y_2 =8.0 \sin(\omega t +30^{\circ})$ Now we will set $t=0^{\circ}$ to add them like vectors: Let $y_h$ be the sum of the horizontal components and $y_v$ be the sum of the vertical components: $y_h = y_1 \cos t + y_2 \cos t$ $y_h = ( 10 \sin \omega t) \cos t + (8.0 \sin(\omega t +30^{\circ})) \cos t$ $y_h = ( 10 \sin \omega 0^{\circ}) \cos 0^{\circ} + (8.0 \sin(\omega 0^{\circ} +30^{\circ})) \cos 0^{\circ}$ $y_h = 16.9$ $y_v = y_1 \sin t + y_2 \sin t$ $y_v = ( 10 \sin \omega t) \sin t + (8.0 \sin(\omega t +30^{\circ})) \sin t$ $y_v = ( 10 \sin \omega ^{\circ}) \sin ^{\circ} + (8.0 \sin(\omega ^{\circ} +30^{\circ})) \sin 0^{\circ}$ $y_v = 4.0$ Now we can use the Pythagorean theorem to find the magnitud $y_m$: $y_m=\sqrt{y_h^2+y_v^2}$ $y_m=\sqrt{16.9^2+4.0^2}$ $y_m=17.4$ Now we can use trigonometry to find the angle $\beta$: $\beta=\arctan (y_v/y_h)$ $\beta=\arctan (4.0/16.9)$ $\beta=13^{\circ}$ Therefore, we have: $y=y_1=y_2=y_m \sin (\omega t+\beta) = 17 \sin(\omega t + 13^{\circ})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.