Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 16 - Waves-I - Problems - Page 476: 58a

Answer

$0.846\;kg$

Work Step by Step

Tension in the string: $T=mg$ Frequency: $f=120\;Hz$ Wavelength: $\lambda=\frac{L}{2}=\frac{1.20}{2}\;m=0.60\;m$ Linear density of the string: $\mu=1.6\;g/m=1.6\times10^{-3}\;kg/m$ Therefore, the speed of the waves on the string: $v=\sqrt {\frac{T}{\mu}}$ or, $f\lambda=\sqrt {\frac{mg}{\mu}}$ or, $f^2\lambda^2=\frac{mg}{\mu}$ or, $m=\frac{f^2\lambda^2\mu}{g}$ Substituting the given values $m=\frac{120^2\times0.60^2\times1.6\times10^{-3}}{9.81}\;kg$ or, $\boxed{m=0.846\;kg}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.