Answer
$1Hg_2SO_4(s) \lt -- \gt 2Hg^{+}(aq) +1S{O_4}^{2-}(aq)$
$K_{sp} (Hg_2SO_4) = [Hg^{+}]^2[S{O_4}^{2-}]$
Work Step by Step
- Mercury (I) $(Hg^{+})$ sulfate $(S{O_4}^{2-})$: $Hg_2SO_4$
1. Write the dissociation equation for this salt:
- Identify the ions of the salt: $(Hg^{+})$ and $(S{O_4}^{2-})$, these are the products, and the reactant is the solid salt.
$Hg_2SO_4(s) \lt -- \gt Hg^{+}(aq) +S{O_4}^{2-}(aq)$
- Balance the equation:
$1Hg_2SO_4(s) \lt -- \gt 2Hg^{+}(aq) +1S{O_4}^{2-}(aq)$
2. Now, write the $K_{sp}$ expression.
- Multiply the concentrations of the ions;
- The equilibrium coefficients represent the exponent of these concentrations:
$K_{sp} (Hg_2SO_4) = [Hg^{+}]^2 \times [S{O_4}^{2-}]^1$